Tag Archives: sensorless

Open-BLDC and the CLogic story

Castle ICE HV to Open-BLDC Mod Tutorial Step 10Hi,

It was again a while since my last post, but as always I was quite busy. 🙂

The last news about Open-BLDC was about its V0.3 iteration. A lot has changed and happened since then. I was realizing that I am getting more and more inquires where people were asking about obldc being able to control very different sizes of motors, ranging from 12V and 10A up to 48V and 200A.

This requirement does not really ask for different logic and controls but it definitely asks for many different power stages. Open-BLDC was designed to be modular from the beginning but still to accomodate that kind of a power range it would be necessary to design and create quite a big lineup of hardware.

Around that time I had the opportunity to take a look inside a dead motor controller from Castle Creations just to realize that these guys seem to know what they are doing and that they went with a modular design too. To make a long story short I decided that it will be better to buy one of their of the shelf motor controllers and retrofit them with my logic. That is how CLogic was born.

As it seems other manufacturers are selling ESCs that have the same interface between the logic and the power stage too. Tekin for example. But my guess is that they are just OEM of castle themselves. But who knows. 🙂

Turingy also came out with an ESC that seems to have the same interface, the Turingy dlux. I ordered a few of them to take a look for myself and see if CLogic will fit in there. That would be a great source of cheep power stages. 🙂

CLogic has most of the functionality the Open-BLDC v0.3 had. Because of the size constrains I had to get rid of the dedicated i2c and PPM connectors, but I added isolation on the CAN interface that should provide additional safety when used on a 50V and bigger systems. The i2c and PPM interfaces are still available either over the new AUX connector or through the UART interface connector.

The new AUX connector gives the possibility of easily connecting encoders or hal sensors for sensored operation. So the interfaces stay very flexible with added flexibility due to the big variety of power stages you can use, while being very very compact.

Sure some people complained “The power stages are not Open-Source!!!”, yes that is true. Also these systems start at a higher power and weight class than some of you would want to operate them. That is why there is CPico Power. It is a very small, low power and a hopefully cheep power stage that we are putting together for those who want it all fully open! So no worries. 🙂

I think that wraps up the news about the new direction Open-BLDC is going. I hope you like it. I am looking forward to your comments.

Cheers Esden

Open-BLDC Sensorless Commutation Detection

Hi!

As promised I made some videos. First one is showing the maiden run of a motor connected to the breadboard prototype of Open-BLDC.

(There is also a Vimeo version: Maiden Run of Open-BLDC from Piotr Esden-Tempski on Vimeo)

Yes the motor sounds like a truck. The reason is that I am making forced commutation (not detecting the right time to commutate but do it in fixed time) and the PWM duty cycle is higher then it should be. This way the motor is just jumping between the magnets and has a lot of vibrations.

The second video is a demo of sensorless commutation detection.

(There is also a Vimeo version: Open-BLDC Sensorless Commutation Detection Test from Piotr Esden-Tempski on Vimeo)

We are using a novel way without a virtual crosspoint. (you can read it up in this paper) We do it even a little bit differently then described in the paper, there are no comparators and latches. What we do is condition the signal to be in the range of 0V to 3.3V and sample it with the ADC at the right times. This is probably the simplest way to do something like this in the STM32. One can now play around with the data that the ADC delivers. I think there is a lot of stuff that can be done using such an approach.

In the video you may also wonder why it is so loud. Well the PC fan that I just forced onto the rotor is not really the best payload, also it is not balanced well and the bearings in the motor are not the best anymore because of the unbalanced load. ^^ I am also using the simplest and worst PWM scheme that I know of. The so called H PWM L ON scheme.


“H PWM L ON” PWM scheme. Click on the Image to see other PWM schemes.

You can also see in the video that the motor is pretty robust to external disturbances when running in the commutation detection closed loop. Still I am sure that it can be improved. (If you are interested the sourcecode running this can be seen here)

If I am not mistaken then only current measurement is missing in the circuitry. When that is done then I can design the first etched prototype of Open-BLDC. WOOO! 🙂

Cheers Esden

P.S. If you have any comments/ideas feel free to write them in the comment section. ^^