Monthly Archives: July 2009

Open-Source and Open-Hardware Multicopter platform

Over the last two weeks many things happened. I found out that there is a really open-source and open-hardware quadrocopter project in the wild. It is called booz and is part of the paparazzi project. Code and schematics just as board layouts are under the GPLv2 or later license. That is really awesome news.

This project is intended for research and universities so the boards are using BGA parts that are difficult to solder for a mere mortal, and there is some lack in documentation. That is why some other people and me started a project called openmulticopter. The basic idea is to create and maintain a completely open-source quadrocopter/multicopter platform for everyone. As a multicopter does not consist only of the control electronics but also contains parts like remote control receiver, brushless motor controllers, a frame, and so on, we tried to combine many open-source parts that are already out there. Just take a look into the wiki for more details.

Some highlights of open-source components that we have chosen so far are:

  • booz (the core of the platform)
  • libopenstm32 (firmware library for STM32 microcontrollers)
  • RCOPEN24 (a 2.4GHz remote control system)
  • open-bldc (brushless motor controllers)

We also formulated a mission statement that can be found in the openmulticopter wiki.

There is still a lot of work in front of us, but I am really happy with the progress we are making. If you are interested in contributing just drop into the #openmulticopter IRC channel on Freenode, or write an email to the mailing list.

PWM Schemes/Fieldvector Control

Some time ago I announced the Open-BLDC project in the Mikrokopter Forum, the post, that you can find here inspired a very interesting Discussion. One of the topics were PWM Schemes and why one should think about them. The most important reason is efficiency. Most controllers to use H_PWM_L_ON or H_ON_L_PWM schemes. An alternative is PWM_ON_PWM scheme which prevents currents through freewheeling diodes connected in parallel to the MOSFET’s. The freewheeling diodes have higher losses then a MOSFET. I am really asking myself why it is not used. One reason I can think of is that this scheme has 12 steps instead of 6 and therefore is more difficult to implement and BEMF measurement for commutation detection may be more complicated.

Another approach to the efficiency question may be using fieldvector control. This involves a sinusoidal pwm scheme and current measurement on the phases. Using that way of control should decrease torque ripples which are typical the other schemes mentioned above. It also involves a lot more work on the firmware side.

I started building a rig for testing the efficiency of the different schemes. It involves a harddisk platter connected to the motor and two harddisk magnets. At the end I will have a eddy current break and can measure how much current is needed to achieve a specific rotation speed. I hope that this way I will be able to make a more or less scientific comparison of control approaches.

If you have a motor controller I would be really happy if you could take an oscilloscope and record the voltages on the phases. I am really interested what control schemes others use.

Open-BLDC mockup

Hi!

As you already know I have layouted the Open-BLDC boards. I was not sure if everything fits mechanically. So I took some cardboard and created a mechanical mockup. It really looks good! It is darn stable (even though it is only cardboard and not FR4) and the screws fit snugly. I think we are getting really near to a state where I can order some boards.

You can take a look at some images attached to this post.

Have fun! 🙂